
DEPARTMENT OF ELECTRONICS,
TELECOMMUNICATIONS AND INFORMATICS

8240 - INTEGRATED MASTER’S IN COMPUTER AND
TELEMATICS ENGINEERING

V2X: Medical Emergency Service 2.0

Authors:
Lúcia Sousa 93086

Manuel Couto 93285
Rafael Dias 95284

Raquel Pinto 92948
Rodrigo Martins 93264

Supervisors: Susana Sargento, Pedro Rito, Miguel Luís
Collaborators: Francisco Castro, João Fernandes

PEI 2020/2021 Semester 2
6 July 2021

Report on the Project of Informatics Engineering Project of the Telematics and Computer
Engineering Integrated Masters authored by Lúcia Sousa, Manuel Couto, Rafael Dias, Raquel
Pinto, Rodrigo Martins under the guidance of Susana Sargento, Pedro Rito, Miguel Luís, Full
Professors at DETI, - University of Aveiro, and Bosch’s collaborators Francisco Castro, João

Santos

i

Abstract

Vehicle-to-Everything communications are an innovative and emergent technology that
allows the exchange of cooperative messages, alerts, and multimedia in a wireless vehicular
environment. It can connect not only vehicles to other vehicles but also to infrastructures,
cellular networks, cloud, and vulnerable road users, such as pedestrians. This way, it covers
a vast number of applications from traditional infotainment to the most advanced functions of
cooperative and assisted driving.

This project aims to help reduce the response time of emergency services whenever
an accident occurs, using Vehicle-to-Everything enabled vehicles and gateways with
cellular communications. Using this communication method, all vehicles hold constant
communication, broadcasting crucial information, such as their location or if they suffered
an accident, to nearby vehicles. When an accidented vehicle is detected, the gateway
vehicle (vehicle responsible of notifying the emergency services) assembles and sends this
information to a dedicated dashboard handled by emergency service operators. By using the
Web Application, it is possible to receive the occurred accidents and analyze their data, such
as the location of the accident, number of vehicles and people involved, as well as videos and
livestreams captured by the gateway vehicle or Roadside Unit. This process occurs almost
instantaneously, taking no more than a few seconds from the moment the accident happens
until it is displayed on the Web Application. After the arrival of the accident, you can see
all the information about it and the emergency services can associate an ambulance and see
a suggested route to the accident, you can also see the livestream of the gateway car, the
livestreams of the city cameras and cars on the road.

Keywords: Cellular Vehicle-to-Anything Communications, Wireless Access in Vehicular
Environments, Dedicated Short Range Communications, Cooperative-Intelligent Transport
System, Internet of Things, Road Safety

ii

Acknowledgement

We would like to thank our mentors Susana Sargento, Pedro Rito, and Miguel Luís, other
colleagues and teachers, who during this semester helped us by providing a lot of information,
constructive criticism, and patience that facilitated the development of this project.

We also would like to thank the Bosh collaborators Francisco Castro and João Fernandes
for their availability and help.

iii

Contents

Abstract ii

Acknowledgement iii

Lists of Figures vii

Lists of Tables viii

Acronyms ix

1 1. Introduction 1

2 2. State of the art 3
2.1 Vehicular Ad hoc Networks (VANETs) . 3
2.2 eCall . 3
2.3 5GCar . 4
2.4 Backscatter communication (Boosting Crosswalk Awareness) 4
2.5 Conclusion . 4

3 3. Differences between the base model and the new model 5
3.1 Base model vs New model . 5
3.2 Improvements in the Web App . 5

4 4. Conceptual Modelling 6
4.1 Functional requirements . 6
4.2 Non-functional requirements . 6
4.3 Actors . 7
4.4 Use Cases . 7
4.5 Assumptions and Dependencies . 8
4.6 Deployment diagram . 9

5 5. Procedure 11
5.1 Communication Module . 11

5.1.1 V2X Router . 11
5.1.2 CAM Format . 11
5.1.3 DENM Format . 12
5.1.4 CAM and DENM Parsing . 13
5.1.5 The accident . 15
5.1.6 Gateway Selection . 15
5.1.7 Test a real situation . 17

5.2 Web Application Module . 18
5.2.1 Backend . 18
5.2.2 Frontend . 22
5.2.3 Livestream Server Component . 23

iv

Table of Contents

6 6. Message Flow 26
6.1 Accident detected . 26
6.2 Web App handling . 26

7 7. Results and discussion 28
7.1 Communication Module Results . 28
7.2 Live location tracker Results . 28
7.3 Web Application Results . 30

7.3.1 User View . 30
7.3.2 Administrator View . 36

8 8. Conclusion 40

v

Lists of Figures

1-1 Emergency call for crashed vehicles . 1

4-1 Use Cases Diagram . 7
4-2 Deployment Diagram . 10

5-1 Vehicles in constant communication . 11
5-2 Standard Sample CAM . 12
5-3 Example of CAM message using Wireshark 12
5-4 Standard Sample DENM . 13
5-5 Example of DENM message using Wireshark 13
5-6 Cooperative Awareness Message (CAM) packet constitution 14
5-7 Decentralized Environmental Notification Message (DENM) packet constitution 14
5-8 Filter of the network packets . 14
5-9 Accident simulation . 15
5-10 Message sent by the gateway to the Web App API 16
5-11 Test Scheme . 17
5-12 Accident Scheme . 18
5-13 Accident Database . 21
5-14 Ambulance Database . 21
5-15 Cameras Database . 22
5-16 Ambulance and Cars Database . 22
5-17 LiveStream Database . 22
5-18 Web Application and Server . 23
5-19 Example of a message sent to start a livestream 24
5-20 Example of the information about a livestream stored in the InfluxDB database 24
5-21 Example of a message sent to stop a livestream 25

6-1 Message sent by the gateway to the Web App API 26
6-2 Message sent by the gateway to the Web App API 26

7-1 Login page from the web app . 30
7-2 Login page with error from the web app . 30
7-3 Home page from the web app . 31
7-4 Map page from the web app . 31
7-5 Accidents table from the web app . 32
7-6 Accident details top page from the web app 32
7-7 Accident details bottom page from the web app 33
7-8 Accident details bottom page with ambulance associated from the web app . . . 33
7-9 Details of the vehicles involved in an accident 34
7-10 Accident details map page with livestream from the web app 34
7-11 Accident details map page with ambulance route from the web app 35
7-12 Blue cars (cars on the road) and grey cars (other accidents) 35
7-13 Accident details map page with ambulance route in real time from the web app 35
7-14 User profile page from the web app . 36

vi

Lists of Figures

7-15 Edit profile page from the web app . 36
7-16 Users table with admin view on the web app 37
7-17 Users table in admin view with the option to delete user and edit their data . . . 37
7-18 User Register page . 38
7-19 User Register page with error . 38
7-20 Accidents table with option to delete accidents on the web app 39

vii

List of Tables

5-1 APIs Table . 19

7-1 Time Measures . 28
7-2 Time Measurements . 29

viii

Acronyms

CAM Cooperative Awareness Message

CV2X Cellular Vehicle-to-Everything

DENM Decentralized Environmental Notification Message

DOM Document Object Mode

DSRC Dedicated short-range communications

EU European Union

LTE Long-Term Evolution

MQTT Message Queuing Telemetry Transport

OBU On Board Unit

RTSP Real Time Streaming Protocol

RSU Roadside Unit

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VANETs Vehicular Ad hoc Networks

ix

Acronyms

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

WAVE Wireless Access in Vehicular Environments

x

1. Introduction

Nowadays, medical assistance for road accidents sometimes comes late for several reasons.
One of them is that the interveners may somehow be incapacitated to the point of not being
able to call for help.

In this project, Vehicle-to-Everything (V2X) communication is very important. This is
an emerging and innovative technology that enables the exchange of cooperation, alert and
multimedia messages in a wireless vehicular environment. This type of communication allows
connecting a vehicle not only to other vehicles, but also to infrastructures, the cellular/cloud
network and vulnerable road users (such as motorbikes, cyclists and/or pedestrians), thus
covering a wide number of applications from traditional infotainment cases to the most
advanced cooperative and assisted driving functions. However, in a vehicular environment,
not all elements of this ecosystem have access to such technology, and it becomes imperative
to create systems that enable cooperation between vehicles with vehicular communication
technologies, and at the same time, connection to the infrastructure and vehicles that only
have vehicular communications.

In this context, and using current vehicle communication technologies (Dedicated
short-range communications (DSRC)/ Cellular Vehicle-to-Everything (CV2X)), Long-Term
Evolution (LTE), 5G and computer vision, it is possible to create an emergency message for
crashed vehicles, able to instantly inform emergency medical response entities with information
about the accident coordinates, number of passengers and vehicles involved, and even provide
the competent entities with images and livestream of the crashed vehicles. In turn, emergency
services can associate an ambulance to a given accident and follow it in real time. This will
allow them to optimise the means used in each situation, as well as the speed with which they
are used.

Figure 1-1: Emergency call for crashed vehicles

1

Introduction

Figure 1-1 illustrates an example of a situation where the emergency call system for
crashed vehicles can be useful. In this figure, a road is illustrated with 2 crashed vehicles,
and a vehicle that is driving towards them. The crashed vehicles are equipped with a vehicle
communications system (DSRC/ CV2X), which both vehicles use to warn nearby vehicles
that they are crashed. In turn, the vehicle heading in the direction of the accident (equipped
with V2X communications systems, able to communicate with the cars and the infrastructure),
receives the accident warning from the two cars, and starts sending its livestream and recording
a video with detailed images of the crashed vehicles. Then, this livestream, this video and the
information concerning the crashed cars (coordinates, number of occupants, number of vehicles
involved, etc.) are sent to the emergency medical authorities.

Finally, (not illustrated in Figure 1) this information can be used by the road managing
authority in question, giving them the possibility to redirect traffic to other adjacent roads.
Furthermore, the emergency services can also associate an ambulance to the accident and see
the best route to take to the accident, being also able to follow the ambulance in real time. You
can also see the cars on the streets and other places with accidents.

The main objective of this project is to develop a system to optimise the way emergency
resources are allocated to emergency situations, thus reducing response time, and finally, road
traffic management.

2

2. State of the art

To better understand what was intended in this area for the development of the project,
besides familiarising ourselves with the work done the previous year, we read and studied other
research works and projects similar to the project that we were going to implement. This
made us better prepared for what was ahead of us and made us create new ideas that would be
interesting to implement in the project. Some of the most relevant works studied are presented
in the following sections.

2.1 Vehicular Ad hoc Networks (VANETs)

Vehicular Ad hoc Networks (VANETs) [1] is a developing technology aimed at providing a
safer and smoother travel experience. It is classified into 2 categories:

• Vehicle-to-Vehicle (V2V) communication: Enables vehicles to wirelessly exchange
information about their speed, location, and heading. Vehicles equipped with appropriate
software can use messages from surrounding vehicles to determine a potential accident.

• Vehicle-to-Infrastructure (V2I) communication: Is the wireless exchange and bi-
directional of data between vehicles and road infrastructure.

This project uses V2V and V2I to create a communication architecture that automatically
manages traffic to help emergency vehicles select the least congested route (based on data sent
by sensors) to the emergency site. During any difficulty, the system will respond and forward
the necessary information on traffic congestion. Furthermore, the system also responds and
generates an emergency message at the central node if the emergency vehicle encounters an
accident.

2.2 eCall

eCall [2] is a system used in vehicles across the European Union (EU) that, if a vehicle is
involved in a serious road accident, automatically makes a free-of-charge emergency call to
112. It can also be activated manually with the push of a button and operates in all EU countries.
Wherever you are, if your vehicle is involved in a serious accident, you will be connected to
the nearest emergency network, no matter where you bought and registered your vehicle.

When eCall is activated, it connects you to the nearest emergency response center using
a phone and data connection. This enables the driver and passengers in the vehicle to
communicate with the emergency center operator while a minimum set of data is automatically
transmitted (exact location, time of the accident, vehicle identification number, and direction
of travel).

To obtain this information eCall has access to the crash system and sensor information from
the car. The emergency services can then assess and manage the situation. If the eCall system
fails, you receive a warning message.

3

State of the art

2.3 5GCar

5GCar [3] is an European project with the goal of ”Developing an overall 5G system
architecture providing optimized end-to-end V2X network connectivity for highly reliable and
low-latency V2X services, which supports security and privacy, manages quality-of-service and
provides traffic flow management in a multi-RAT and multi-link V2X communication system”
[4]

Some of the V2X services idealized by this project were:

• Lane Merger assistance [5]: Using information from the cars around and video from
roadside cameras it’s possible to calculate the needed speed for a vehicle to have a smooth
and safe lane merge.

• See-through sensors: Using front facing cameras it’s possible for a vehicle behind
another to get a view of what’s in front to evaluate, for example, if an overtake is possible.

• Network assisted vulnerable pedestrian protection: Using several sources of
information such as cameras and other sensors it’s possible to detect vulnerable road users
and warn cars about their position to avoid crashes. For example pedestrians crossing the
pedestrian crossing.

2.4 Backscatter communication (Boosting Crosswalk Awareness)

This paper [6] has the purpose of reducing road victims by warning cars when a crosswalk is
being used. They detect the use of a crosswalk with passive sensors and communicate with cars
via vehicular networks to warn the driver, using an app or the infotainment system.

2.5 Conclusion

Doing a similarity analysis we can see that project V2X: Medical Emergency Service 2.0 shares
some of these papers’ approaches such as:

• Being a cooperative service

• Trading information via standardized messages

• Improving emergency services’ response time

• Using cellular networks, V2V and V2I communication.

• Using paths for emergency services to go to the scene, they can also see the vehicles near
the accident and other accident locations. This way, it is possible to avoid the congested
areas.

Although a lot of similarities, our project has some new approaches, like:

• Not relying on an accidented car to contact emergency services

• Using video and livestream for emergency services to see the accident

• The emergency services can associate an ambulance for specific accident.

4

3. Differences between the base model and the
new model

3.1 Base model vs New model

Base New

Sends CAMs periodically (10 times
per second)

Sends CAMs periodically (10 times
per second)

Useful information about the
accident is inside an extra container
in the CAM

The DENM message contains all
the relevant information about the
accident

Communication
module

CAMs non standard CAMs and DENMs are standard

Sends special CAM when detects
an accident

Sends 1 DENM when detects an
accident

Gateway
selection
algorithm

The cars are evaluated based on the
fact that they are behind the crashed
car

Takes into account the path taken
by all cars involved, the cars will
be evaluated based on their point
of view during and before the
accident, this way the car with
better footage will be chosen

Camera
submodule

Can’t provide livestream to the Web
App

Can provide livestream to the Web
App

3.2 Improvements in the Web App

The Web App received some new features:

• The possibility of associating and tracking the live location of emergency services and
seeing which route the emergency service would take to the accident;

• The tracking of vehicles circulating in Aveiro as shown in Figure 7-12;

• In the accident details page the user can see the live location of the emergency services
as mentioned before and see other accidents in the map as shown in Figure 7-12, this
feature together with the emergency service route is very usefull to select the best route
to the accident and to allow better traffic management;

• The user can also request and view livestreams of cars and street cameras near the
accident as shown in 7-11 .

5

4. Conceptual Modelling

4.1 Functional requirements

For this project, the vehicles involved in the accident, those passing close to the accident
and ambulances must be equipped with the vehicle communication system. Furthermore, all
vehicles should be configured in such a way that they can transmit live images via Real Time
Streaming Protocol (RTSP) and record video of the accident. Ambulances don’t need to have
cameras, but if they do, it will be possible to see their livestream as well.

The choice of the gateway car must be made based on a gateway choice algorithm.
The camera should have a viewable image of the crashed vehicles, have a field of view to

capture the lanes and have RTSP support.
To process this information, the web app must be modified in order to process and display

this information of all cars, ambulances associated to accidents and Roadside Units (RSUs),
for each of the users (administrative staff and emergency institutions such as medical services,
police and fire brigades). This one will also have to know where the cameras of the region
where the Emergency Institution are (in this case Aveiro). Since there will be a separation of
the information to be shown to each user, he will have to have an account.

This project optimises response time, resource allocation, keeping emergency professionals
and other users up to date on any accident and the road traffic management.

4.2 Non-functional requirements

• Usability: The web application must be easy to use so that the data is understood as
quickly as possible by users;

• Reliability: The fact that the system handles emergency cases, has a direct impact on the
importance of the system to perform its required functions without failing;

• Efficiency: The system must be able to process and display all the information from the
accidented car to the web application in 5 seconds or less;

• Capacity: The web app must be able to analyze and keep records of several accidents
at the same time;

• Availability: Since the system is designed to help in emergency situations it must have
at least 99% uptime so that no help request is lost;

• Security: The web application and the roadside unit’s internet interface must be secure
and robust against attackers;

• Recoverability: In the event of a crash or malfunction, resetting should be easy and
painless;

• Maintainability: The system and the web application should be easy to maintain and
upgrade.

6

Conceptual Modelling

4.3 Actors

The target users of the system are emergency institutions such as police, medical services, and
fire/paramedics.

The objectives of the system are to optimise the response to an emergency by displaying
important details about the accident, such as its severity, the number of people involved and
many other relevant information, and to manage road traffic by displaying a route for each
ambulance assigned and accidents occurring elsewhere. This information will be displayed
on the Web Application and should be as clear and simple as possible so that the emergency
services do not have to worry about it being difficult to understand and focus on the information
that is passed through the Web Application. The main actors are:

• Emergency Institution: The officers of the Emergency Institution have access to all
the information related to the emergency they are supporting, as well as the emergencies
about the designated city.

• Administration Team: The administration team has access to create, delete and change
data and users.

4.4 Use Cases

Figure 3-1 presents the use case model of the whole system, having just one package
representing the usage of the web application.

Figure 4-1: Use Cases Diagram

Detailed description of each use case:

• Create, edit and delete users: The Administrator can add, remove or edit information
of policemen/paramedics or Emergency Control personnel in the database;

7

Conceptual Modelling

• Check latency and error logs: The Administrator can view latency and log web app
errors in order to fix them later;

• Check accidents history: Enables the Administrator to see details of past accidents;

• Put the cameras in the cities in database: The Administrator inserts the camera
locations of the cities into the database;

• Delete accidents: Furthermore, an user with administration permissions is also able to
delete accidents from the system;

• Check accidents in the city: Users are able to check all the existing accidents in their
city, on a map. After selecting an accident, the user will be directed to the corresponding
accident page;

• Associate an ambulance: Each user can assign an ambulance to a specific accident;

• Change status of the accident: Permit users to change the status of each accident in the
table;

• View city cameras): Users can see the cameras in the city on the map;

• See cars on the road (blue cars): Users can see all cars on the road (blue car icon);

• See other accidents on the map (accidents in grey): They can also see other accidents
on the map (accident icon in grey);

• See the route to the accident: All users can see the path of the ambulance associated
with a given accident;

• Follow the ambulance in real time: Users can follow the ambulance on the map in real
time and thus help the ambulance;

• View accident information: Allow users to view the accident information (data,
accident severity, location, images, livestrams and video).

4.5 Assumptions and Dependencies

To implement this project, there are some dependencies and some assumptions to consider:

• A permanent internet connection is needed for the emergency services to access all the
data;

• A server capable enough to handle all the information;

• The hardware can’t be damaged when the accident happens;

• The emergency vehicles must be able to send CAM messages to inform where they are
located;

• All the vehicles and nearby photoage sources involved (crashed cars, gateway vehicle &
street cameras) must be equipped with a vehicular communication system;

• A camera needs to be integrated on the gateway vehicle in order to record images of the
accident.

8

Conceptual Modelling

4.6 Deployment diagram

As we can see in Figure 3-2, in the communications module the cars are equipped with On
Board Units (OBUs) and ip cameras and the ambulances only with OBUs, which communicate
with the web app through RSUs using Wireless Access in Vehicular Environments (WAVE) or if
none are present through 4G. The RSUs write the information they receive from the surrounding
cars in the mqtt broker.

On the web app side, the web server is able to communicate with a Message Queuing
Telemetry Transport (MQTT) broker that is receiving information from the CAMs of vehicles
circulating in Aveiro, which allows us to monitor the real time position of the vehicles that
are assigned to accidents. The information received from the mqtt broker will be stored in
a database influxdb that is optimized to receive information in real time. This allows us to
have greater confidence and accuracy in the data received. We also have a Structured Query
Language (SQL) database where we store the information about accidents, users, ambulances,
congested and some other information as will be explained in the next chapter.

The frontend is done in react and the backend in flask, we also use node.js for the site and
the server. The livestream is sent to the server through an RSU or cellular network depending
on the situation. The commmunication between the livestream server and the web app backend
is done via the SocketIO library.

9

Conceptual Modelling

Figure 4-2: Deployment Diagram

10

5. Procedure

5.1 Communication Module

The vehicles are in constant communication, this is accomplished by using DSRC and the
Rendits V2X router to transmit CAMs 10 times per second to all nearby vehicles and DENMs in
the case of an accident, both the CAMs and DENMs contain randomly generated information,
except for the speed and location which are provided by the GPS.

Figure 5-1: Vehicles in constant communication

5.1.1 V2X Router

The Rendits V2X Router is a platform for research and development in intelligent
transportation systems. It supports 802.11p wireless communication and the European
Telecommunications Standards Institute ITS-G5 standard. This router was chosen because
it is easy to modify or replace parts of the software stack, and to transmit customized messages.
In our work we had to modify this router to better suit our needs, this means, we had to create
a component inside this router called Vehicle-Service that is responsible to create and send the
CAMs and DENMs messages.

5.1.1.1 Vehicle-Service

As mentioned before the Vehicle-Service component is responsible for sending CAMs and
DENMs to the nearby cars, both the CAMs and DENMs contain randomly generated
information, except for the speed and location which are provided by the GPS. The CAMs
are sent 10 times per second and the DENMs is sent when the car detects an accident, but the
car doesn’t have a sensor that can detect that, so in order to emulate that sensor we made this
component listen to a specific User Datagram Protocols (UDPs) port that when triggered sends
the DENM message.

5.1.2 CAM Format

"The standard CAM (Cooperative Awareness Messages) is one of the components
of the reference architecture defined by the European Telecommunication
Standards Institute (ETSI) for transmitting geographically aware information with
relevant data for other vehicles." [7]

11

Procedure

Figure 5-2: Standard Sample CAM

The following image shows what a CAM looks like when it is sent or received:

Figure 5-3: Example of CAM message using Wireshark

5.1.3 DENM Format

"DENM (Decentralized Environmental Notification Message) constitutes another
type of application support facility providing a notification service about road
status." [8]

12

Procedure

Figure 5-4: Standard Sample DENM

The following image shows what a DENM looks like when it is sent or received:

Figure 5-5: Example of DENM message using Wireshark

5.1.4 CAM and DENM Parsing

In order to analyse the data broadcasted, the PCAPPlusPlus library is used to capture the CAMs
and DENMs, and to parse them to a C++ program. However, this has raised a problem. The

13

Procedure

messages captured were not always CAMs and DENMs and for that reason parse was done to
any message that was large enough, a solution had to be found for this.

The solution was to capture all the packets on the wlan0 interface and decode them using
the ASN-1 specification, to do this we implemented a python script, sniffer.py, that works
like a filter. For all captured CAMs and DENMs from different versions we assigned a 4-
byte code, code 1 for the CAMs and code 2 for the DENMs. After decoding the fields,
stationID, latitude, longitude, speedValue and headingValue of the CAMs, and the fields
stationID, latitude, longitude, numberOfOccupants, externalTemperature and headingValue of
the DENMs we build packets to be sent, with the code and values, mentioned above, decoded.

This away it is possible to forward only the CAMs and DENMs through a port, be able
to differentiate between them and using the PCAPPlusPlus library, receive these CAMs and
DENMs so that they can be analysed in the C++ program.

1 {
2 "code", (4-byte)
3 "stationID", (8-byte)
4 "latitude", (8-byte)
5 "longitude", (8-byte)
6 "speedValue", (4-byte)
7 "headingValue", (4-byte)
8 }

Figure 5-6: CAM packet constitution

1 {
2 "code", (4-byte)
3 "stationID", (8-byte)
4 "latitude", (8-byte)
5 "longitude", (8-byte)
6 "numberOfOccupants", (2-byte)
7 "externalTemperature", (2-byte)
8 "headingValue", (4-byte)
9 }

Figure 5-7: DENM packet constitution

Figure 5-8: Filter of the network packets

14

Procedure

5.1.5 The accident

The vehicle-service was implemented to be used to send DENMs on request. This request is
made by using a python script, this allows to send a DENM of the accidented car.

The emergency message is sent by the accidented car to the gateway car and from the
gateway car to an RSU, if available, if not, the gateway car sends the emergency message via
4G. The information contained in the emergency message was randomly generated, except for
the location and speed.

Figure 5-9: Accident simulation

5.1.6 Gateway Selection

Since vehicles are in constant communication, they know where is the accidented car and its
neighbors. With this information, each vehicle can calculate which one is in a better position to
record the accident, using the position, direction they’re headed, and consider also the speed.
In other words, each vehicle captures the CAM of the nearby vehicles and runs the algorithm
where it compares the entire history of CAM to select the gateway.

15

Procedure

Capture of CAMs and DENMs
1 if code==1 then
2 #CAM has detected
3 CamItems x = {latitude, longitude, heading, speed}
4 #cam_container is a multimap, to be able to save
5 #CAMs with the same stationID
6 cam_container.insert({station_id,x})
7

8 if code ==2 then
9 #DENM has detected

10 DenmItems y = {latitude,longitude, numberOfOccupants,
11 externalTemperature, heading}
12 denm_container.insert(station_id,y)
13 #the function gateway_selection has as input parameters
14 #the multimap with all CAMs and map with the DENM
15 gateway_selection(cam_container, denm_container)
16 #send DENM to API
17 send_to_api(denm_container)
18 #send livestream of gateway car
19 send_livestream()
20 #when the gateway is no longer in a good position
21 #to film the accident the livestream is stopped
22 stop_livestream()

The nearby cars will receive a score, if they have not passed the accident and are driving in
the opposite direction. The score is given based on their location in relation to the accidented
car, on their heading and their speed. The vehicle with the best score will be the gateway. The
smaller the distance to the accidented vehicle, the lower the speed and the lower the comparison
between the heading of the accidented vehicle and the heading of the nearby vehicle, the better
the score.

The gateway sends the information to the Web App API, this information is extracted from
the DENM.

1 {
2 "coords": {
3 "lat",
4 "lng",
5 },
6 "location",
7 "video_id",
8 "n_people",
9 "temperature"

10 }

Figure 5-10: Message sent by the gateway to the Web App API

16

Procedure

Pseudo Algorithm
1 function gateway_selection(CAMs, DENM)
2 for CAM in CAMs
3 d = distance(DENM.lat, DENM.lon, CAM.lat, CAM.lon)
4 comp_heading = comp(DENM.heading, CAM.heading)
5 if(pos < 0 && distance >= 10 && CAM.speed > 0)
6 s = score(CAM)
7 camData.insert({station_id,infoCam})
8 camData.sort()
9 return camData.first

5.1.6.1 Test and Results

To test our gateway selection algorithm, we send six CAMs where we have varied the speed,
the heading and the location, and one DENM.

The Figure 5-11 illustrates the test done, we sent the CAMs with the IDs 1, 2, 3, 4 and 5,
all the vehicles in different positions, from both directions and varying the speed.

With the algorithm running, as soon as the DENM was detected, the vehicles in the worst
positions were discarded, for this test, the CAMs discarded were 2, 3 and 4, because they have
passed the accident and are driving in the opposite direction, and the rest, 1 and 5, were given
a score, as mentioned above, the vehicle in the best position, with the shortest distance and
lowest speed got the best score and was chosen as the gateway. The expected result would then
be vehicle 1, and in fact it was the one obtained.

The running time of the algorithm was 0.000717772s.
The upload time of the DENM to the API was 0.359925s.

Figure 5-11: Test Scheme

5.1.7 Test a real situation

To test all this in a real situation, we equip the vehicles and the ambulance with OBUs. Their
communication with the Web App will be done through the RSUs using WAVE technology.

17

Procedure

Through figure 5-12, we can see that vehicles 1, 3 and the RSUs are equipped with IP
cameras, and all the vehicles, including the ambulance, are equipped with OBUs. For this
specific test, an accident is simulated with a pedestrian crossing the road and being hit by a car.

The accidented vehicle sends a DENMs, which vehicle 1 detects and communicates through
the OBUs with the Web App in order to notify it of the accident, as car 1 is the gateway, its
livestream is started automatically.

As the RSUs is equipped with a camera, the web app will add the accident and detect that
it is able to broadcast your livestream and will start it automatically. After some time the car 3
will approach the accident site and send its livestream also through the RSUs.

Figure 5-12: Accident Scheme

5.2 Web Application Module

This module is divided in 2 main components: the web site (react frontend and flask backend)
and the Livestream Server.

5.2.1 Backend

For the backend we keep using Flask providing a full web server API capable of communicating
with a local Database and all the users of the application. Since Flask is a micro web framework
written in Python, it allows the use of python Libraries and external APIs and perform Media
and Data processing.

We now use InfluxDB which is a time series database designed to handle high write and
query loads. Open source server agent to collect metrics from stacks, sensors and systems.
Turns any InfluxData instance into a production-ready cluster that can run anywhere.

New features were also created, such as the question of being checked if the car is on fire
according to its temperature, and also a function to check if the crashed car is in an area where

18

Procedure

there is already the presence of other crashed vehicles in the 500-meter area, if this happens,
the database will have information about the cars that are in congested areas.

5.2.1.1 Libraries and external API’s

It can be said that Flask is a very much "do it yourself" framework. So, to connect the sqlite
database in a Flask application, it was necessary to use flask-sqlalchemy package since there is
no built-in database interaction. The only thing needed to do this connection is the Database
Uniform Resource Locator (URL).

Another library used was marshmallow to deserialize objects from the database. Moreover,
the libraries marshmallow-sqlalchemy and flaskmarshmallow were also utilized. The first one
is used to create schemas of the data that comes from the objects deserialization. The second
one transforms these schemas into JSON objects to be sent to the application. Summing up,
both are thin integration layers for Flask and marshmallow to add more features, such as smooth
the data visualization and its transference to the database.

Also, since this project requires the localization recognition of the accidents, the Geopy
library was used to make it easy to identify addresses, cities, and countries using third-party
geocoders. In this project, the geocoder used was Nominatim.

When it comes to external APIs, the Google Maps APIs was utilized to be possible to embed
and retrieve data from Google Maps into the web app. As one of the features of this project is
to withdraw images of the roads where the accident happened, the Street View Static API made
the job.

We also used node-rtsp-stream and Jsmpeg-player to stream RTSP stream and output to
websocket for consumption by jsmpeg.

5.2.1.2 API

Type Path Arguments Values Required Optional

POST /markers/<id> id Integer true default=0
GET /markers/<id> id Integer false default=0
GET /CarsMarkers/<id> id Integer false default=0
GET /CameraMarkers/<id> id Integer false default=0
GET /list_ambulances false
POST /addRTSP false
POST /addRTSP false

GET /startStream/<id_acc>/<id_target> id_acc Integer true
id_target Integer true

GET /stopStream/<accident_id>/<car_id> id_acc Integer true
id_target Integer true

GET /videos/<id> id Integer false
POST /add_accident_denm
GET /ambulances_by_user
FUNCT checkNearbyCameras() accCoords float tuple true (location["lat"],

location["lng"])

FUNCT addCamerasToAccident() cameras dictionary true key:camera id
value:link rtsp

accident_id Integer true

Table 5-1: APIs Table
FUNCT - function; GET - method GET; POST - method POST.

/markers/<id>

19

Procedure

It is used to receive the ambulance id from the ’POST’ method, then with the method ’GET’
this route gets the localization of the given id.

/CarsMarkers/<id>

Search in the database for cars and then send it to the frontend.

/CameraMarkers/<id>

Get all avaliable cameras and send it to the frontend.

/list_ambulances

Query the database and return all ambulances found.

/addRTSP

Adds the livestream to the database, if the car who send it is gateway it starts automatically.

/startStream/<id_acc>/<id_target>

It is used to Start the LiveStream.

/stopStream/<accident_id>/<car_id>

It is used to Stop the LiveStream.

/videos/<id>

This function check how many lives are associated with the accident and if exists returns the
link as a websocket to it.

/add_accident_denm

This is where we add the accident and his details to the database.

/ambulances_by_user

Get all the ambulances avaliable to the current logged user.

checkNearbyCameras(accCoords)

Check if a camera is close enough to the accident to start a stream.

addCamerasToAccident(cameras, accident_id)

Adds available cameras to the accident and starts the stream.

20

Procedure

5.2.1.3 Live Location

We implemented a system of live location for all the vehicles we are using, in specific cars
and ambulances. In our webapp the user has continuos acess to the real time position of each
available vehicle.

While cars are moving they send CAMs to the RSUs, this RSUs reads and parses the
information about each car and then stores the parsed information in the mqtt broker.

We are able to subscribe this broker and read from it this usefull information, with that we
save the coordinates (latitude and longitude) of each vehicle in our optimized database figure
(Figure 5-16: Ambulance and Cars Database).

Then to make this functionality available in our web app we just need to keep querying our
database and displaying it on the map.

5.2.1.4 Database

In accident database we added the columns fire, ambulance and congested. Column fire is used
to indicate if the car is burning or not (0 = not burning, 1 = burning), column ambulance is used
to indicate the number of the ambulance who is attending the accident and column congested
indicate if the accident is located in a congested area.

Figure 5-13: Accident Database

In this database we associate each user with their avaliable ambulances.

Figure 5-14: Ambulance Database

21

Procedure

This database is used to link each camera with their RTSP link.

Figure 5-15: Cameras Database

This database made in influxdb is used to get the live location based on latitude and
longitude of the ambulances and the gateway cars, class 10 is an ambulance and class 5 is
a car.

Figure 5-16: Ambulance and Cars Database

This database associates each gateway car with the indicated accident and RTSP link.

Figure 5-17: LiveStream Database

5.2.2 Frontend

To best continue last year’s project the framework used continued to be React for its nice,
responsive and intuitive form. However, React’s most appealing feature is its fast rendering
performance when using the virtual Document Object Mode (DOM) compared to other
frameworks. Since the application is constantly receiving updates, all new information must be
fast enough to display those updates.

Since React is a Javascript-based framework, to provide a server environment for the
application, Node.js was used. This environment was chosen for its ability to use asynchronous
programming, optimizing the performance and scalability of the application, allowing real-time
communication and increasing the efficiency of the web application.

In addition, the Sass preprocessor was also used, which stands for Syntactically awesome
stylesheets, to make the design process much faster and more efficient.

To get the ambulance path we used the DirectionsRenderer react library (render the route on
the map) in combination with the Directions service API from Google (generates the path). The
coordinates of the accident are obtained from the SQL database, since this coordinate remains

22

Procedure

static over time, the coordinates of the ambulance and the coordinates of the cars on the road
(blue cars) are obtained from the InfluxDB database since it needs constant updates.

If users click on the blue cars, they start their livestream which can be viewed on the web
app just like other livestreams.

Besides this information, you can also see the locations of the cameras by user location.
And just like in blue cars users can start their livestream.

The location of the cars on the road as well as the location of the other accidents allows
a better traffic management on the road, so the ambulance can choose another route to the
accident.

5.2.3 Livestream Server Component

As mentioned before one of the requirements of this project was the capability of receiving a
live image feed from the cars or other sources near the accident. To meet this requirement it
was developed a livestream server capable of receiving images from cameras and redirecting
them to their respective pages in the web application.

This server was written in NodeJS and connects to the backend of the Web Application via
SocketIO. The handling of the frames received from the camera was implemented using the
node-rtsp-stream library. The servers sends the images through WebSockets to a specialized
video player that displays them. This video player was implemented using jsmpeg-player react
component.

The node-rtsp-stream library was chosen because allows for a great costumization of
different fields of the livestream, some examples are: the transport mode (UDP or Transmission
Control Protocol (TCP)) in this case we used tcp or the resolution of the image. The
jsmpeg-player was chosen because has great compatibility with the node-rtsp-stream as the
documentation of those libraries mention.

Figure 5-18: Web Application and Server

23

Procedure

5.2.3.1 Server Structure

All of the methods inside the server consist in 4 SocketIO endpoints that have a specific role.

• Socket.on "connect": Displays a message to inform that the server as connected
successfully to the backend.

• Socket.on "teste": Displays a message to inform that the connection test between the
backend and the server was successful.

• Socket.on "rtsp": Used by the backend to make the server start a livestream to a specific
camera.

• Socket.on "stop": Used by the backend to make the server stop a specific livestream.

5.2.3.2 Server Message Flow

When a Livestream must start the following message flow happens:

1. The backend sends to the server through the Socket "rtsp" the information about the
livestream that must start. This information contains the id of the accidented car, the id
of the car or camera and the link of the rtsp stream as exemplified by the Figure 5-19.
The backend also stores in the InfluxDB database the information about the livestream
as exemplified by the figure 5-20. The "stream_started" parameter is used by the
backend to know if an the livestream as started so it can send a list containing it to the
frontend, ’1’ means the livestream already started and ’0’ means the opposite.

1 {
2 "accidented_car_id": 43,
3 "carID": 21,
4 "rtspLink": "rtsp://example@example/11"
5 }

Figure 5-19: Example of a message sent to start a livestream

1 {
2 "measurement": "livestream",
3 "tags": {
4 "car_id": 21,
5 "acc_id": 43,
6 "car_class": 5
7 },
8 "time": datetime.now(),
9 "fields": {

10 "link_RTSP": "rtsp://example@example/11",
11 "stream_started": '1'
12 }
13 }

Figure 5-20: Example of the information about a livestream stored in the InfluxDB database

24

Procedure

2. The server upon receiving this information starts the livestream for that car/camera and
sends the video feed through a WebSocket ready for consumption by the video player.
The port needed to associate a livestream to a car/camera is calculated by adding 9000
to the id of the car/camera, this is done to ensure that 2 livestreams don’t use same port
because otherwise the video wouldn’t work. The number 9000 was chosen so ensure that
the result port wasn’t being used. Finally the server stores the livestream object inside a
map, the key being the port of the livestream and the value the livestream object itself.

When a Livestream must stop the following message flow happens:

1. The backend sends to the server through the Socket "stop" the information about the
livestream that must start. This information contains the port of the livestream that must
stop as exemplified by the Figure 5-21. The backend also deletes from the InfluxDB
database the information about that livestream.

1 {
2 "port": 9021
3 }

Figure 5-21: Example of a message sent to stop a livestream

2. The server upon receiving this information searches in the livestream map for the
livestream object using the port as the key. When the object is found the livestreams
stops, the port is freed and the livestream is deleted from the map.

25

6. Message Flow

6.1 Accident detected

When an accident is detected the gateway car notifies the web app by posting a message with
the structure of the Figure 6.1 on the corresponding API endpoint (/add_accident_denm)
described in the section 5.2.1.2.

1 {
2 "location": {
3 "lat": 40.63480,
4 "lng": -8.66040
5 },
6 "video_id": 60,
7 "n_people": 4,
8 "temperature": 40
9 }

Figure 6-1: Message sent by the gateway to the Web App API

6.2 Web App handling

Uppon receiving this message the web app reads the information present in the message, stores
the accident in the database and searches for nearby street cameras. If there are any cameras
in a 50 meter range of the accident this cameras will be associated to the accident and their
livestream will automatically start.

To start this livestreams the backend send a message with the structure of the Figure 6.2
through the socketIO endpoint related to this event, this will trigger the Livestream server
to start a livestream for the given RTSP link. The structure of this message is the same for
starting a livestream of a camera in a car and for a street camera and this is why the parameter
"carID" is present in this message, this makes no difference for the livestream server because
the implementation for each type of camera is the same.

1 {
2 "accidented_car_id": 43,
3 "carID": 21,
4 "rtspLink": "rtsp://example@example/11"
5 }

Figure 6-2: Message sent by the gateway to the Web App API

After all of this steps the accident appears on the accident table and the livestreams only
appear in the associated accident.

26

Results and discussion

While all of this was happening the backend was also keeping track of the passenger cars
and ambulances circulating in Aveiro and storing their position in the influxdb as mentioned in
section 5.2.1.

27

7. Results and discussion

7.1 Communication Module Results

This section presents the results of the communication module, and evaluates the performance
of our developed software. The result of this module is a program that autonomously detects
accidents and sends a livestream and information to the Web App.

To test the performance of the communication module, we made 5 tests to measure the
time elapsed between detecting the accident and sending the livestream and the DENMs to the
Web App. The test consisted of measuring the time it took from detecting an accident using
the DENMs until the livestream is sent, and we measured the time it took until the emergency
message reached the Web App.

DENM Upload (s) Gateway Selection (s) Link RTSP Upload (s)
Average time 0.24896 0.0004258246 0.01619988

Standard Deviation 0.04512 0.00004 0.00071
95% Confidence 0.24896 0.0004258246 0.01619988

Table 7-1: Time Measures

• DENM Upload: The time it takes, in seconds, for the JSON message to be created and
sent via the API until a success message is received.

• Gateway Selection: The time it takes, in seconds, since the DENM is detected and the
gateway selection process is completed.

• Link RTSP Upload: The time it takes, in seconds, for the RTSP link to upload, this
process is complete when we receive a success message from the API.

As we can see from Table 7.1, the measured times are within the requirements, the
performance of the gateway selection algorithm has been improved, as well as the sending
time of the DENMs to the API.

7.2 Live location tracker Results

This section presents the results of the live location tracker component, and evaluates the
performance of our developed software. The result of this component is a program that
autonomously reads and parses the information available in the mqtt broker and stores it in
the InfluxDB.

To test the performance of the location tracker component, we readed and decoded 14
messages about the 3 cars circulating in Aveiro present in the broker and measured the time
elapsed between receiving the message, decoding it and storing it in the InfluxDB.

28

Results and discussion

Decode (s) Insert (s)
Average time 1,11E-05 0,9836583138

Standard Deviation 0,00001288175384 0,9969841458

Table 7-2: Time Measurements

• Decode: The time it takes, in seconds, for the message to be decoded and parsed to a
JSON object.

• Insert: The time it takes, in seconds, to insert/update the JSON object in the InfluxDB.

As we can see from Table 7.2, the measured times are within the requirements.

29

Results and discussion

7.3 Web Application Results

When both frontend and backend work together, the result is a fully functional dynamic web
application.

Looking at the final result, the features provided by this application are:

7.3.1 User View

The login page is the entry page that requires user identification and authentication, performed
regularly by entering a username and password combination.

Figure 7-1: Login page from the web app

Whenever an error occurs, the user receives feedback from the web app.

Figure 7-2: Login page with error from the web app

Main page where he can see the statistics regarding all the accidents that happened last
month or last week. The user can also see the accidents that happened in some districts.

30

Results and discussion

Figure 7-3: Home page from the web app

The ability to look at all the accidents that are in the database on a map with the ability to
focus on the user’s location.

The colors of the cars represent the actual state of the accident ("Accident still not
answered", "Emergency services are on their way" or "Accident resolved"), and it is possible
to click on a traffic accident that is being displayed on the map to see its details, and you will
be redirected to the accident details page of the corresponding accident.

Figure 7-4: Map page from the web app

Checking all accidents in a table capable of filtering these accidents by date and time by
date and time, number of cars or people involved, number of injuries, severity, accident status,
and fire. It is also possible to to sort the accidents by those that happened today, yesterday, last
month, or all in an ascending or descending order. Also, since the user has a city associated
with his profile, it is only possible to see the accidents that correlate with his location.

31

Results and discussion

Figure 7-5: Accidents table from the web app

Figure 7-6: Accident details top page from the web app

On this page it is possible to see some information regarding the accident itself, such as
its location, a video of the accident, images of the roads where the accident took place, the
number of vehicles and people involved, the number of people injured, severity of the accident,
livestreams and assigned ambulance. This detail page can also be accessed through the accident
table.

32

Results and discussion

Figure 7-7: Accident details bottom page from the web app

After an ambulance is assigned to the accident in question, it automatically changes from
"Accident still not answered" to "Emergency services are on their way".

Figure 7-8: Accident details bottom page with ambulance associated from the web app

The user is also allowed to note details about the cars involved in the accident. In addition,
the user as the ability to update the number of injured people in case the initial prediction did
not match the truth.

33

Results and discussion

Figure 7-9: Details of the vehicles involved in an accident

Right after the accident message is sent to the webapp, the webapp will display the images
from the livestreams appropriate to that accident.

Figure 7-10: Accident details map page with livestream from the web app

The fastest route the ambulance has to take until it reaches the accident site is shown on the
map, the remaining accidents are shown in grey and the remaining cars on the road are shown
in blue. This makes it easier for the ambulance to reach the scene.

34

Results and discussion

Figure 7-11: Accident details map page with ambulance route from the web app

Figure 7-12: Blue cars (cars on the road) and grey cars (other accidents)

The map is always being updated, and after an ambulance is assigned to an accident, it will
be possible to follow its route in real time via the map.

Figure 7-13: Accident details map page with ambulance route in real time from the web app

35

Results and discussion

Figure 7-14: User profile page from the web app

You have access to your profile and are able to edit your information. However, information
such as e-mail and city cannot be updated unless the user is a system administrator, due to
security reasons.

Figure 7-15: Edit profile page from the web app

7.3.2 Administrator View

In case the user is an administrator, the system allows the functionality to manage all user
accounts, permissions to add, edit and delete their data. It is also possible for the administrator
to create a new user by clicking on the add icon in the users table.

36

Results and discussion

Figure 7-16: Users table with admin view on the web app

The administrator can also delete users or change some information about them, such as
username, e-mail, city, role and role id.

Figure 7-17: Users table in admin view with the option to delete user and edit their data

After the administrator has added a new user to the database, the user can complete his
registration on the registration page. The web application only allows users to register if an
e-mail address has been previously assigned to them by the administrator and their password is
null.

37

Results and discussion

Figure 7-18: User Register page

Figure 7-19: User Register page with error

Also, in the accident table, the admin view has its advantages. If the user is an administrator,
it is possible to remove an accident from the database by clicking on the trash icon in the
accident table.

38

Results and discussion

Figure 7-20: Accidents table with option to delete accidents on the web app

39

8. Conclusion

In this work, the use of vehicular networks and cellular communications has been
successfully demonstrated to reduce the response time of emergency services and manage street
traffic by autonomously alerting emergency services. This has been achieved by designing
software that autonomously detects crashed vehicles, analyses the vehicles surrounding the
crash and chooses a gateway vehicle or RSU capable of forwarding an emergency message
using the REST API. All the information is processed and displayed in a web application. After
the detection of the accident, the emergency message, the cars and cameras near the accident,
the remaining accidents, the video and the RTSP link are transmitted in 0.24896, 0.0004258246,
0.01619988 seconds, respectively (on average). After this, users can associate a particular
ambulance, seeing then its path and if they wish, choose one of the nearby cars/cameras to see
its livestream. The tracking of the position of the cars takes about 0,984 seconds to be registered
in the backend of the project (1,11E-05 for the decoding of the position plus 0,9836583138 for
the insertion on the InfluxDB, on average) . This work is not intended to replace other existing
services, such as eCall, but to work alongside them to provide more information.

Regarding future work, in the web app, the work should focus on creating a dataset
for statistics regarding accidents on the front page: how many accidents per month, how
many accidents per district and some other filters that could be interesting, add means
of communicating with emergency services by implementing text and video chat, improve
signposting of congested areas and improve database queries. On vehicular and cellular
communication it is important to work on improving the mechanical simulation capabilities
of our algorithms such as using SUMO [9] - Urban Mobility Simulation - as a tool to create
more test scenarios.

40

Bibliography

[1] M. S. B. Syed, F. Memon, S. Memon, and R. A. Khan. "iot based
emergency vehicle communication system," 2020 international conference on
information science and communication technology (icisct), 2020, pp. 1-5, doi:
10.1109/icisct49550.2020.9079940.

[2] The interoperable eu-wide ecall. https://ec.europa.eu/transport/themes/its/
road/action_plan/ecall_en, 2018.

[3] 5gcar - 5g communication automotive research and innovation. https://5gcar.eu/,
2019.

[4] The 5g infrastructure public private partnership. https://5g-ppp.eu/5gcar/, 2019.

[5] L. Sequeira, A. Szefer, J. Slome, and T. Mahmoodi. "a lane merge coordination model for
a v2x scenario,” in 2019 european conference on networks and communications (eucnc),
2019, pp. 198–203.

[6] F. Pereira, H. Sampaio, R. Chaves, R. Correia, M. Luís, S. Sargento, M. Jordão, L. Almeida,
C. Senna, A. S. R. Oliveira, and N. Borges Carvalho. “when backscatter communication
meets vehicular networks: Boosting crosswalk awareness,” ieee access, vol. 8, pp. 34
507–34 521, 2020.

[7] Virginia de Cózar, Javier Poncela, Marina Aguilera, Muhammad Aamir, and
Bhawani Shankar Chowdhry. Cooperative vehicle-to-vehicle awareness messages
implementation. In Faisal Karim Shaikh, Bhawani Shankar Chowdhry, Habib M. Ammari,
Muhammad Aslam Uqaili, and Assadullah Shah, editors, Wireless Sensor Networks for
Developing Countries, pages 26–37, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[8] José Santa, Fernando Pereniguez-Garcia, Antonio Moragón, and Antonio Skarmeta.
Experimental evaluation of cam and denm messaging services in vehicular
communications. Transportation Research Part C: Emerging Technologies, 46:98–120, 09
2014.

[9] Sumo - simulation of urban mobility. https://www.eclipse.org/sumo/.

41

https://ec.europa.eu/transport/themes/its/road/action_plan/ecall_en
https://ec.europa.eu/transport/themes/its/road/action_plan/ecall_en
https://5gcar.eu/
https://5g-ppp.eu/5gcar/
https://www.eclipse.org/sumo/

	Abstract
	Acknowledgement
	Lists of Figures
	Lists of Tables
	Acronyms
	1. Introduction
	2. State of the art
	Vehicular Ad hoc Networks (VANETs)
	eCall
	5GCar
	Backscatter communication (Boosting Crosswalk Awareness)
	Conclusion

	3. Differences between the base model and the new model
	Base model vs New model
	Improvements in the Web App

	4. Conceptual Modelling
	Functional requirements
	Non-functional requirements
	Actors
	Use Cases
	Assumptions and Dependencies
	Deployment diagram

	5. Procedure
	Communication Module
	V2X Router
	CAM Format
	DENM Format
	CAM and DENM Parsing
	The accident
	Gateway Selection
	Test a real situation

	Web Application Module
	Backend
	Frontend
	Livestream Server Component

	6. Message Flow
	Accident detected
	Web App handling

	7. Results and discussion
	Communication Module Results
	Live location tracker Results
	Web Application Results
	User View
	Administrator View

	8. Conclusion

